Random search algorithms are useful for many ill-structured global optimization problems with continuous and/or discrete variables. Typically random search algorithms sacrifice a guarantee of optimality for finding a good solution quickly with convergence results in probability. Random search algorithms include simulated annealing, tabu search, genetic algorithms, evolutionary programming, particle swarm optimization, ant colony optimization, cross-entropy, stochastic approximation, multistart and clustering algorithms, to name a few. They may be categorized as global (exploration) versus local (exploitation) search, or instance-based versus model-based. However, one feature these methods share is the use of probability in determining their iterative procedures. This article provides an overview of these random search algorithms, with a probabilistic view that ties them together.