5-aminotetrazole (5AT) has been widely used as a fuel in SPGGs for its high nitrogen content, heat resistance, and environmentally friendly product. However, 5AT-based propellants still have disadvantages, such as a high exhaust temperature and unstable combustion rate, which somewhat limit their application. Given that transition metal oxides are typically employed in small quantities to enhance the performance of solid propellants, this study selected nickel oxide (NiO) nanoparticles as a catalyst and employed them in conjunction with 5AT via mechanical ball milling to investigate their impact on the pyrolysis behavior of 5AT. It was found that the nanoscale NiO particles can significantly reduce the thermal degradation temperature of 5AT according to TG-DSC tests. The calculation of the energy required to initiate the pyrolysis of 5AT using three kinetic methods, namely Friedman (FR), Flynn–Wall–Ozawa (FWO), and Kissinger–Akahira–Sunose (KAS), indicated that the use of NiO nanoparticles can reduce the energy required by more than 46 kJ mol−1, thereby increasing the likelihood of 5AT pyrolysis. Meanwhile, the reduced thermal safety parameters indicated that NiO makes 5AT more susceptible to thermal decomposition due to thermal explosion transition, so more care is needed for the storage of 5AT. Moreover, the TG-FTIR test was conducted to study the pyrolysis mechanism with or without NiO; the results showed that NiO exerts different catalytic effects on the gas products. The results from this study can offer direction and recommendations for future research on solid propellants.