The contact behaviour between an ellipsoid and a rigid plane is significant in research on bearing and assembly joint surfaces. However, an empirical relationship between an elastic–plastic ellipsoid and a rigid plane has not been established. In this study, the elastic–plastic contact behaviour between a deformable ellipsoid and a rigid plane was investigated by establishing a new finite element model. The proposed elastic–plastic ellipsoid contact model was designed considering the effects of the ellipticity and strain-hardening rate of the ellipsoid. The strain-hardening rate and ellipticity of the ellipsoid affected the contact area, load and mean pressure. Furthermore, the effect gradually increased with an increase in interference. New dimensionless empirical formulas for determining the contact load and contact area were proposed based on the analysis. The proposed model was validated by comparing the obtained results with previous experimental results and those of theoretical models. This study can be used to predict the elastic–plastic contact parameters between a single ellipsoid and a rigid body, such as bearings, gears and cams. It can also be used to investigate the elastic–plastic contact behaviour between anisotropic rough surfaces composed of asperities with different radii of curvature.