SUMMARYBased on properties of the Helmholtz equation, we derive a new equation for an auxiliary variable. This reduces much of the oscillations of the solution leading to more accurate numerical approximations to the original unknown. Computations confirm the improved accuracy of the new models in both two and three dimensions. This also improves the accuracy when one wants the solution at neighbouring wavenumbers by using an expansion in k. We examine the accuracy for both waveguide and scattering problems as a function of k, h and the forcing mode l. The use of local absorbing boundary conditions is also examined as well as the location of the outer surface as functions of k. Connections with parabolic approximations are analysed.