2022
DOI: 10.4018/ijdsst.286690
|View full text |Cite
|
Sign up to set email alerts
|

A Modified Markov-Based Maximum-Entropy Model for POS Tagging of Odia Text

Abstract: POS (Parts of Speech) tagging, a vital step in diverse Natural Language Processing (NLP) tasks has not drawn much attention in case of Odia a computationally under-developed language. The proposed hybrid method suggests a robust POS tagger for Odia. Observing the rich morphology of the language and unavailability of sufficient annotated text corpus a combination of machine learning and linguistic rules is adopted in the building of the tagger. The tagger is trained on tagged text corpus from the domain of tour… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 18 publications
0
0
0
Order By: Relevance