“…Several MPPT approaches have been published in the literature, including Perturb and Observe (P&O) (Abdelsalam et al, 2011; Ahmed and Salam, 2015; Femia et al, 2005), Incremental Conductance (INC) (Liu et al, 2008; Sivakumar et al, 2015; Tey and Mekhilef, 2014), Fractional Short Circuit Current (FSCC) (Noguchi et al, 2002; Noh et al, 2002), Fractional Open Circuit voltage (FOCV) (Kobayashi et al, 2004), Fractional Nonlinear Synergetic Control (FNSC) (Mehiri et al, 2018), and Model Predictive Control (MPC) (Mossa et al, 2022). The use of intelligent techniques such as the Fuzzy Logic Controller (FLC) (Chuang et al, 2022; Farhat et al, 2015; Rajavel and Rathina Prabha, 2021; Rezk et al, 2019), Artificial Neural Network (ANN) (Boumaaraf et al, 2015; Rai et al, 2011), Radial Basis Function Neural Network (RBFNN) (Sitharthan et al, 2019), Adaptive Neuro-Fluent Interference System (ANFIS) (Ammar et al, 2020; Kalaiarasi et al, 2021), Genetic Algorithm (GA) (Daraban et al, 2014; Zhang et al, 2015), and Particle Size Optimization (PSO) (Chrouta et al, 2021; Duan et al, 2017; Nagarajan et al, 2022; Saad et al, 2016) are also implemented. These approaches are evaluated using different criteria, such as simplicity, convergence time, implementation details, desired sensors, cost-effectiveness ratio, and the need for correction (Ahmad et al, 2020; Saad et al, 2018).…”