2013
DOI: 10.1080/02331888.2011.599068
|View full text |Cite
|
Sign up to set email alerts
|

A modified nested-error regression model for small area estimation

Abstract: A nested-error regression model having both fixed and random effects is introduced to estimate linear parameters of small areas. The model is applicable to data having a proportion of domains where the variable of interest cannot be described by a standard linear mixed model. Algorithms and formulas to fit the model, to calculate EBLUP and to estimate mean-squared errors are given. A Monte Carlo simulation experiment is presented to illustrate the gain of precision obtained by using the proposed model and to o… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2018
2018
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 13 publications
0
1
0
Order By: Relevance
“…Where the variables of interests cannot be described by standard linear models, nested-error regression model having both fixed and random effects are usually applied to include Monte Carlo simulation methodology in order to enhance representative precision. Nested-error modeling is better at regional spatial scales and performs poorly at large scale spatial coverage [9].…”
Section: Introductionmentioning
confidence: 99%
“…Where the variables of interests cannot be described by standard linear models, nested-error regression model having both fixed and random effects are usually applied to include Monte Carlo simulation methodology in order to enhance representative precision. Nested-error modeling is better at regional spatial scales and performs poorly at large scale spatial coverage [9].…”
Section: Introductionmentioning
confidence: 99%