2019
DOI: 10.1002/for.2568
|View full text |Cite
|
Sign up to set email alerts
|

A modified sequential Monte Carlo procedure for the efficient recursive estimation of extreme quantiles

Abstract: Many applications in science involve finding estimates of unobserved variables from observed data, by combining model predictions with observations. The sequential Monte Carlo (SMC) is a well‐established technique for estimating the distribution of unobserved variables that are conditional on current observations. While the SMC is very successful at estimating the first central moments, estimating the extreme quantiles of a distribution via the current SMC methods is computationally very expensive. The purpose… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 29 publications
0
0
0
Order By: Relevance