Recent studies have demonstrated that miRNAs can play important roles in osteoblast differentiation and bone formation. However, the function of miRNAs in bone loss induced by microgravity remains unclear. In this study, we investigated the differentially expressed miRNAs in both the femur tissues of hindlimb unloading rats and primary rat osteoblasts (prOB) exposed to simulated microgravity. Specifically, miR-132-3p was found up-regulated and negatively correlated with osteoblast differentiation. Overexpression of miR-132-3p significantly inhibited prOB differentiation, whereas inhibition of miR-132-3p function yielded an opposite effect. Furthermore, silencing of miR-132-3p expression effectively attenuated the negative effects of simulated microgravity on prOB differentiation. Further experiments confirmed that E1A binding protein p300 (Ep300), a type of histone acetyltransferase important for Runx2 activity and stability, was a direct target of miR-132-3p. Up-regulation of miR-132-3p by simulated microgravity could inhibit osteoblast differentiation in part by decreasing Ep300 protein expression, which, in turn, resulted in suppression of the activity and acetylation of Runx2, a key regulatory factor of osteoblast differentiation. Taken together, our findings are the first to demonstrate that miR-132-3p can inhibit osteoblast differentiation and participate in the regulation of bone loss induced by simulated microgravity, suggesting a potential target for counteracting decreases in bone formation.Numerous studies have shown that mechanical stimulations play an important role in the maintenance of bone homeostasis, skeletal morphology and strength during bone formation and development [1][2][3] . By contrast, skeletal unloading, as observed in space flight astronauts or in patients subjected to prolonged immobility or bed-rest, typically induces severe bone loss 4 . The early studies described similar phenomenon, such as cancellous osteoporosis in weight-bearing bones, decreased bone formation and abnormal bone metabolism after space flight 5,6 . During the spaceflight mission on the Soviet/Russian MIR spacecraft and the International Space Station, crew members experienced a persistently enhanced areal bone mineral density lost at an average monthly rate of 1.06% from the spine and 1.0 to 1.6% from the hip, despite adopting an intense exercise regimen to counteract mechanical unloading 7 . Decreased bone formation in both rat cortical and cancellous bones was also demonstrated by tetracycline labeling before and after space flight [8][9][10][11] . In view of spaceflight tremendous costs, more studies have been performed on the ground. The hindlimb unloading (HU) model is a well-tolerated method to mimic the cephalic fluid shift and removal of skeletal weight-bearing loads seen in spaceflight 12 . Despite the variability of data among independent studies, this model successfully replicates an osteopenia characterized by decreased bone mineral content, weakened bone resistance, and loss of femoral mass, simila...