This article concerns an extension of the topological derivative concept for 3D inverse acoustic scattering problems involving the identification of penetrable obstacles, whereby the featured data-misfit cost function J is expanded in powers of the characteristic radius a of a single small inhomogeneity. The O(a 6) approximation J 6 of J is derived and justified for a single obstacle of given location, shape and material properties embedded in a 3D acoustic medium of arbitrary shape. The generalization of J 6 to multiple small obstacles is outlined. Simpler and more explicit expressions of J 6 are obtained when the scatterer is centrally-symmetric or spherical. An approximate and computationally light global search procedure, where the location and size of the unknown object are estimated by minimizing J 6 over a search grid, is proposed and demonstrated on numerical experiments, where the identification from known acoustic pressure on the surface of a penetrable scatterer embedded in a acoustic semi-infinite medium, and whose shape may differ from that of the trial obstacle assumed in the expansion of J, is considered.