The tension distribution problem of cable-driven parallel robots is inevitable in real-time control. Currently, iterative algorithms or geometric algorithms are commonly used to solve this problem. Iterative algorithms are difficult to improve in real-time performance, and the tension obtained by geometric algorithms may not be continuous. In this paper, a novel tension distribution method for four-cable, 3-DOF cable-driven parallel robots is proposed based on the wave equation. The tension calculated by this method is continuous and differentiable, without the need for iterative computation or geometric centroid calculations, thus exhibiting good real-time performance. Furthermore, the feasibility and rationality of this algorithm are theoretically proven. Finally, the real-time performance and continuity of cable tension are analyzed through a specific numerical example.