Three O-fluoroazobenzene-based molecules were chosen as memory-active molecules: FAZO-1 with a D-A2-D symmetric structure, FAZO-2 with an A1-A2-A1 symmetric structure, and FAZO-3 with a D-A2-A1 asymmetric structure. Both FAZO-1 and FAZO-2 had a lower molecular polarity, whereas FAZO-3 had a higher polarity. The fabricated indium-tin oxide (ITO)/FAZO-1/Al (Au) and ITO/FAZO-2/Al (Au) memory devices both exhibited volatile static random access memory (SRAM) behavior, whereas the ITO/FAZO-3/Al (Au) device showed nonvolatile ternary write-once-read-many-times (WORM) behavior. It should be noted that the reproducibility of these devices was considerably high, which is significant for practical application in memory devices. In addition, the different memory performances of the three active materials were determined to be attributable to the stability of electric-field-induced charge-transfer complexes. Therefore, the switching memory behavior could be tuned by adjusting the molecular polarity.