2006
DOI: 10.1016/j.biosystemseng.2006.05.005
|View full text |Cite
|
Sign up to set email alerts
|

A Monte Carlo Approach for estimating the Uncertainty of Predictions with the Tomato Plant Growth Model, Tomgro

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
13
0
1

Year Published

2007
2007
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 30 publications
(14 citation statements)
references
References 8 publications
0
13
0
1
Order By: Relevance
“…Although these parameters changed with the greenhouse structure, the type of crops, etc., all these changes had little influence on the final results of the model. Therefore, these parameters can be considered as fixed, and their values are set as recommended values or average values according to some studies [21]. The last remaining value S CO 2 was a fixed value, and its impact on the final results of the model was very small, verifying the idea of ignoring this parameter in the previous section.…”
Section: Parameter Analysis Resultsmentioning
confidence: 93%
See 3 more Smart Citations
“…Although these parameters changed with the greenhouse structure, the type of crops, etc., all these changes had little influence on the final results of the model. Therefore, these parameters can be considered as fixed, and their values are set as recommended values or average values according to some studies [21]. The last remaining value S CO 2 was a fixed value, and its impact on the final results of the model was very small, verifying the idea of ignoring this parameter in the previous section.…”
Section: Parameter Analysis Resultsmentioning
confidence: 93%
“…According to Jones et al (1991), the appearance rate of new nodes was GENR S = GENRAT · F N (T) · F(CO 2 ), in which GENRAT is a constant depending on tomato varieties. However, Cooman et al (2006) [21] stated that GENRAT is a linear function related to the number of stems. Given that the data of nodes in the conditions of specific temperature and humidity cannot be obtained in the actual greenhouse, and relevant studies [22] found that CO 2 inhibition function in TOMGRO had little effect on the appearance rate of the nodes, the integrated model used the calculation equation of the nodes as shown in Equation (4).…”
Section: Integrated Modelmentioning
confidence: 99%
See 2 more Smart Citations
“…Cuando el numero de parámetros en un modelo incrementa tambien incrementa la incertidumbre de las salidas debido al incremento de incertidumbres de las entradas (parametros). Este procedimiento cobra importancia para determinar el dominio que tiene cada parametro (Cooman and Schrevens 2006). El objetivo de esta investigación fue realizar un analisis de sensibilidad global mediante el metodo de Sobol para el modelo HORTSYST con la finalidad de conocer la dinámica de los indices de sensibilidad de los parametros en cinco etapas de desarrollo del cultivo de jitomate hidropónico en invernadero: a los diez días después de trasplante (10 DDT), durante la etapa vegetativa (25 DDT), inicio de la fructificación (40 DDT), cosecha (80 DDT) y al final (119 DDT).…”
Section: Introductionunclassified