2013
DOI: 10.22237/jmasm/1383278580
|View full text |Cite
|
Sign up to set email alerts
|

A Monte Carlo Comparison of Robust MANOVA Test Statistics

Abstract: Multivariate Analysis of Variance (MANOVA) is a popular statistical tool in the social sciences, allowing for the comparison of mean vectors across groups. MANOVA rests on three primary assumptions regarding the population: (a) multivariate normality, (b) equality of group population covariance matrices and (c) independence of errors. When these assumptions are violated, MANOVA does not perform well with respect to Type I error and power. There are several alternative test statistics that can be considered inc… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
22
0
7

Year Published

2016
2016
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 37 publications
(30 citation statements)
references
References 58 publications
1
22
0
7
Order By: Relevance
“…Se revisó, primero, la homogeneidad de covarianzas, que resultó verificada (m de Box = 49,396; p = 0,008), de acuerdo con Huberty y Petroskey (2000). Luego se examinó la homogeneidad de varianzas, la cual se verificó solo para una de ambas variables dependientes (p profundo = 0,153; p superficial < 0,001), llevando ello a utilizar para el análisis el estadístico Traza de Hotelling, considerado robusto en casos de heterocedasticidad (Finch y French, 2013). Posteriormente, se examinó el cumplimiento del supuesto de multicolinealidad entre variables dependientes (r = -0,381; p < 0,01), el cual quedó verificado (Tabachnick y Fidell, 2013).…”
Section: Procedimientosunclassified
“…Se revisó, primero, la homogeneidad de covarianzas, que resultó verificada (m de Box = 49,396; p = 0,008), de acuerdo con Huberty y Petroskey (2000). Luego se examinó la homogeneidad de varianzas, la cual se verificó solo para una de ambas variables dependientes (p profundo = 0,153; p superficial < 0,001), llevando ello a utilizar para el análisis el estadístico Traza de Hotelling, considerado robusto en casos de heterocedasticidad (Finch y French, 2013). Posteriormente, se examinó el cumplimiento del supuesto de multicolinealidad entre variables dependientes (r = -0,381; p < 0,01), el cual quedó verificado (Tabachnick y Fidell, 2013).…”
Section: Procedimientosunclassified
“…Simulation study results have shown clearly that the performance of Pillai's Trace, Wilk's Lambda, Hotelling-Lawley's Trace and Roy's Greatest Root can be severely compromised when there are violations in the assumption of equality of covariance matrices [2,17,20,21]. In particular, when group covariance matrices are not equivalent in the two groups case, and the smaller group has the larger variance, Type I error rates will be inflated, whereas when the larger group has the larger variance power is reduced.…”
Section: Standard Parametric Multivariate Means Comparisonsmentioning
confidence: 99%
“…In particular, when group covariance matrices are not equivalent in the two groups case, and the smaller group has the larger variance, Type I error rates will be inflated, whereas when the larger group has the larger variance power is reduced. In addition, the presence of skewed dependent variables has also been shown to be related to reductions in power for correctly identifying group differences [2,20,22]. The results of these prior studies has also indicated that no one of the standard MANOVA test statistics is clearly optimal under in all situations when the assumptions are violated, though all generally perform poorly in such situations [18,19,23].…”
Section: Standard Parametric Multivariate Means Comparisonsmentioning
confidence: 99%
See 2 more Smart Citations