We argue that it is possible to obtain higher-derivative Einstein’s field equations by means of an extended complexified backward–forward nonlocal extension of the space–time metric, which depends on space–time vectors. Our approach generalizes the notion of the covariant derivative along tangent vectors of a given manifold, and accordingly many of the differential geometrical operators and symbols used in general relativity. Equations of motion are derived and a nonlocal complexified general relativity theory is formulated. A number of illustrations are proposed and discussed accordingly.