During ejaculation, cauda epididymal spermatozoa are suspended in a protein-rich solution of seminal plasma which is composed of proteins mostly secreted from the seminal vesicle. These seminal proteins interact with the sperm cells and bring about changes in their physiology, so that they can become capacitated in order for the fertilization to take place. Sulfhydryl oxidase (SOX) is a member of the QSOX family and its expression is found to be high in the seminal vesicle secretion of mouse. Previously, it has been reported to cross-link thiol containing amino acids among major seminal vesicle secretion (SVS) proteins. However, its role in male reproduction is unclear. In this study, we determined the role of SOX on epididymal sperm maturation and also disclosed the binding effect of SOX on the sperm fertilizing ability in vitro. In order to achieve the above two objectives, we constructed a Sox clone (1.7 kb) using a pET-30a vector. His-tagged recombinant Sox was over expressed in Shuffle Escherichia coli cells and purified using His-Trap column affinity chromatography along with hydrophobic interaction chromatography. The purified SOX was confirmed by Western blot analysis and by its activity with DTT as a substrate. Results obtained from immunocytochemical staining clearly indicated that SOX possesses a binding site on the sperm acrosome. The influence of SOX on oxidation of sperm sulfhydryl to disulfides during epididymal sperm maturation was evaluated by a thiol labelling agent, mBBr. The SOX protein binds on to the sperm cells and increases their progressive motility. The effect of SOX binding on reducing the [Ca2+]i concentration in sperm head, was determined using a calcium probe, Fluo-3 AM. The inhibitory influence of SOX on sperm acrosome reaction was shown by using calcium ionophore A32187 to induce the acrosome reaction. The acrosome-reacted sperm were examined by staining with FITC-conjugated Arachis hypogaea (peanut) lectin. Furthermore, immunocytochemical analysis revealed that SOX remains bound to the sperm cells in the uterus but disappears in the oviduct during their transit in the female reproductive tract. The results from the above experiment revealed that SOX binding on to the sperm acrosome prevents sperm capacitation by affecting the [Ca2+]i concentration in the sperm head and the ionophore-induced acrosome reaction. Thus, the binding of SOX on to the sperm acrosome may possibly serve as a decapacitation factor in the uterus to prevent premature capacitation and acrosome reaction, thus preserving their fertilizing ability.