Cite this article as: Javier Alfonso-Cendón, José M. Fernández-de-Alba, Rubén Fuentes-Fernández, Juan Pavón, Implementation of context-aware workflows with Multi-agent Systems, Neurocomputing, http://dx.doi.org/10.1016/j. neucom.2014.10.098 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Abstract. Systems in Ambient Intelligence (AmI) need to manage workflows that represent users' activities. These workflows can be quite complex, as they may involve multiple participants, both physical and computational, playing different roles. Their execution implies monitoring the development of the activities in the environment, and taking the necessary actions for them and the workflow to reach a certain end. The context-aware approach supports the development of these applications to cope with event processing and regarding information issues. Modeling the actors in these context-aware workflows, where complex decisions and interactions must be considered, can be achieved with multi-agent systems. Agents are autonomous entities with sophisticated and flexible behaviors, which are able to adapt to complex and evolving environments, and to collaborate to reach common goals. This work presents architectural patterns to integrate agents on top of an existing context-aware architecture. This allows an additional abstraction layer on top of context-aware systems, where knowledge management is performed by agents. This approach improves the flexibility of AmI systems and facilitates their design. A case study on guiding users in buildings to their meetings illustrates this approach.