Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics 2015
DOI: 10.1145/2808719.2812596
|View full text |Cite
|
Sign up to set email alerts
|

A multi-agent system with reinforcement learning agents for biomedical text mining

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2016
2016
2022
2022

Publication Types

Select...
4
4

Relationship

1
7

Authors

Journals

citations
Cited by 16 publications
(3 citation statements)
references
References 16 publications
0
2
0
1
Order By: Relevance
“…To estimate the number of NCBI articles, we applied the text mining analysis implemented in [21,22], which served to locate all article abstracts containing relevant keywords: protein names, PTM types and other words for syntax.…”
Section: Organismal Protein Samplesmentioning
confidence: 99%
“…To estimate the number of NCBI articles, we applied the text mining analysis implemented in [21,22], which served to locate all article abstracts containing relevant keywords: protein names, PTM types and other words for syntax.…”
Section: Organismal Protein Samplesmentioning
confidence: 99%
“…Перспективным решением в создании современных интеллектуальных информационных систем являются системы с мультиагентной архитектурой. Многие распределенные информационные системы интеллектуального анализа данных строятся с использованием архитектуры на базе мультиагентных систем [2][3][4][5]. Мультиагентная система -система, состоящая из двух и более агентов, которые взаимодействуют друг с другом для достижения поставленных перед ними целей [6].…”
Section: Introductionunclassified
“…Multi-Agent Reinforcement Learning (MARL) is a useful approach for executing multi-agent cooperation tasks, such as multi-robot cooperation and traffic signal control [1][2][3][4][5][6]. However, MARL has difficulty with deriving good performance because the behavior of the agents are too complex to allow for cooperation with other agents.…”
Section: Introductionmentioning
confidence: 99%