Hyalomma anatolicum is the principal vector for Theileria annulata, T. equi, and T. Lestoquardi in animals and the Crimean–Congo hemorrhagic fever virus in humans. Due to the gradual loss of efficacy of the available acaricides against field tick populations, the development of phytoacaricides and vaccines has been considered the two most critical components of the integrated tick management strategies. In the present study, in order to induce both cellular and humoral immune responses in the host against H. anatolicum, two multi-epitopic peptides (MEPs), i.e., VT1 and VT2, were designed. The immune-stimulating potential of the constructs was determined by in silicoinvestigation on allergenicity (non-allergen, antigenic (0.46 and 1.0046)), physicochemical properties (instability index 27.18 and 35.46), as well as the interaction of constructs with TLRs by docking and molecular dynamics analysis. The immunization efficacy of the MEPs mixed with 8% MontanideTM gel 01 PR against H. anatolicum larvae was determined as 93.3% and 96.9% in VT1- and VT2-immunized rabbits, respectively. Against adults, the efficacy was 89.9% and 86.4% in VT1- and VT2-immunized rabbits, respectively. A significant (p < 0.001) reduction in the anti-inflammatory cytokine (IL-4) and significantly higher IgG response was observed in a VT1-immunized group of rabbits as compared with the response observed in the control group. However, in the case of the VT2-immunized rabbits, an elevated anti-VT2 IgG and pro-inflammatory cytokine (IL-2) (>30 fold) along with a decreased level of anti-inflammatory cytokine IL-4 (0.75 times) was noted. The efficacy of MEP and its potential immune stimulatory responses indicate that it might be useful for tick management.