Malus sieversii, a wild progenitor of the domesticated apple, is an endangered species and is assigned second conservation priority by the China Plant Red Data Book. It is urgent to carry out in situ conservation of this species, but previous studies have not identified evolutionarily significant units (ESUs) for conservation management. In this study, we investigated the genetic diversity and relationships of six M. sieversii populations from China using integrated analysis of microsatellite (nSSR) data, genome‐wide SNPs and previous results in order to propose a reasonable conservation management. The results showed that levels of genetic diversity were inconsistently reflected by our nSSR and previous studies, suggesting that indices of genetic diversity are not effective to identify priority conservation areas for M. sieversii. Based on the selection criteria of ESUs for endangered species conservation, ESUs should reflect lineage divergence, geographical separation and different adaptive variation. Our phylogenetic tree based on genome‐wide SNPs yielded a clear relationship of divergent lineages among M. sieversii populations, leading to new different from those of previous studies. Three independent lineages, including the pairs of populations Huocheng‐Yining, Gongliu‐Xinyuan and Tuoli‐Emin, were identified. The geographic distances between populations among the different phylogenetic lineages were much greater than those within the same phylogenetic lineage. A cluster analysis on environmental variables showed that the three independent lineages inhabit different environmental conditions, suggesting that they may have adapted to different environments. Based on the results, we propose that three independent ESUs should be recognized as conservation units for M. sieversii in China.