Single-view distributed video coding (DVC) is a video compression method that allows for the computational complexity of the system to be shifted from the encoder to the decoder. The reduced encoding complexity makes DVC attractive for use in systems where processing power or energy use at the encoder is constrained, for example, in wireless devices and surveillance systems. One of the biggest challenges in implementing DVC systems is that the required rate must be known at the encoder. The conventional approach is to use a feedback channel from the decoder to control the rate. Feedback channels introduce their own difficulties such as increased latency and buffering requirements, which makes the resultant system unsuitable for some applications. Alternative approaches, which do not employ feedback, suffer from either increased encoder complexity due to performing motion estimation at the encoder, or an inaccurate rate estimate. Inaccurate rate estimates can result in a reduced average rate-distortion performance, as well as unpleasant visual artifacts. In this paper, the authors propose a single-view DVC system that does not require a feedback channel. The consequences of inaccuracies in the rate estimate are addressed by using codes defined over the real field and a decoder employing successive refinement. The result is a codec with performance that is comparable to that of a feedback-based system at low rates without the use of motion estimation at the encoder or a feedback path. The disadvantage of the approach is a reduction in average rate-distortion performance in the high-rate regime for sequences with significant motion.