2013
DOI: 10.1016/j.eswa.2012.12.009
|View full text |Cite
|
Sign up to set email alerts
|

A multi-industry bankruptcy prediction model using back-propagation neural network and multivariate discriminant analysis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

3
68
0
3

Year Published

2014
2014
2020
2020

Publication Types

Select...
7
3

Relationship

0
10

Authors

Journals

citations
Cited by 139 publications
(84 citation statements)
references
References 27 publications
3
68
0
3
Order By: Relevance
“…Among the first studies using neural networks in detecting financial distress were Odom and Sharda (1990), Wilson and Sharda (1994) and Tam and Kiang (1992). The most recently studies includes, for example Kim and Kang (2010), du Jardin (2010) or Lee and Choi (2013).…”
Section: Prior Research and Literature Reviewmentioning
confidence: 99%
“…Among the first studies using neural networks in detecting financial distress were Odom and Sharda (1990), Wilson and Sharda (1994) and Tam and Kiang (1992). The most recently studies includes, for example Kim and Kang (2010), du Jardin (2010) or Lee and Choi (2013).…”
Section: Prior Research and Literature Reviewmentioning
confidence: 99%
“…Artificial Neural Networks (ANNs) [10][11][12][13] and Support Vector Machine (SVM) [14][15][16][17][18][19] are two commonly soft computing methods used in credit scoring modelling. Recently, other methods like evolutionary algorithms [20], stochastic optimization technique and support vector machine [21] have shown promising results in terms of prediction accuracy.…”
Section: Introductionmentioning
confidence: 99%
“…Modelos internos más recientes pueden encontrarse en (Lee & Choi, 2013) quienes usan redes neurales y discriminantes sobre variables financieras para tratar de predecir la banca rota, (Delen, Kuzey, & Uyar, 2013) usanárboles de decisión sobre variables financieras para medir el desempeño de las empresas o (Zhou, 2013) quien muestra los efectos de distintas formas de muestreo sobre variables financieras en la capacidad de los modelos para predecir las quiebras. Es importante destacar que en todos los casos se busca distinguir entre los estados de quiebra y supervivencia de la empresa, aunque en ocasiones se busca evaluar la posibilidad de un cambio en la nota crediticia.…”
Section: Scorings De Créditounclassified