Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Due to the swift development of the Internet of Things (IoT), massive advanced terminals such as sensor nodes have been deployed across diverse applications to sense and acquire surrounding data. Given their limited onboard capabilities, these terminals tend to offload data to servers for further processing. However, terminals cannot transmit data directly in regions with restricted communication infrastructure. With the increasing proliferation of unmanned aerial vehicles (UAVs), they have become instrumental in collecting and transmitting data from the region to servers. Nevertheless, because of the energy constraints and time-consuming nature of data processing by UAVs, it becomes imperative not only to utilize multiple UAVs to traverse a large-scale region and collect data, but also to overcome the substantial challenge posed by the time sensitivity of data information. Therefore, this paper introduces the important indicator Age of Information (AoI) that measures data freshness, and develops an intelligent AoI optimization data processing approach named AODP in a hierarchical cloud–edge architecture. In the proposed AODP, we design a management mechanism through the formation of clusters by terminals and the service associations between terminals and hovering positions (HPs). To further improve collection efficiency of UAVs, an HP clustering strategy is developed to construct the UAV-HP association. Finally, under the consideration of energy supply, time tolerance, and flexible computing modes, a gray wolf optimization algorithm-based multi-objective path planning scheme is proposed, achieving both average and peak AoI minimization. Simulation results demonstrate that the AODP can converge well, guarantee reliable AoI, and exhibit superior performance compared to existing solutions in multiple scenarios.
Due to the swift development of the Internet of Things (IoT), massive advanced terminals such as sensor nodes have been deployed across diverse applications to sense and acquire surrounding data. Given their limited onboard capabilities, these terminals tend to offload data to servers for further processing. However, terminals cannot transmit data directly in regions with restricted communication infrastructure. With the increasing proliferation of unmanned aerial vehicles (UAVs), they have become instrumental in collecting and transmitting data from the region to servers. Nevertheless, because of the energy constraints and time-consuming nature of data processing by UAVs, it becomes imperative not only to utilize multiple UAVs to traverse a large-scale region and collect data, but also to overcome the substantial challenge posed by the time sensitivity of data information. Therefore, this paper introduces the important indicator Age of Information (AoI) that measures data freshness, and develops an intelligent AoI optimization data processing approach named AODP in a hierarchical cloud–edge architecture. In the proposed AODP, we design a management mechanism through the formation of clusters by terminals and the service associations between terminals and hovering positions (HPs). To further improve collection efficiency of UAVs, an HP clustering strategy is developed to construct the UAV-HP association. Finally, under the consideration of energy supply, time tolerance, and flexible computing modes, a gray wolf optimization algorithm-based multi-objective path planning scheme is proposed, achieving both average and peak AoI minimization. Simulation results demonstrate that the AODP can converge well, guarantee reliable AoI, and exhibit superior performance compared to existing solutions in multiple scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.