2020
DOI: 10.1051/matecconf/202030903015
|View full text |Cite
|
Sign up to set email alerts
|

A multi-label text classification model based on ELMo and attention

Abstract: Text classification is a common application in natural language processing. We proposed a multi-label text classification model based on ELMo and attention mechanism which help solve the problem for the sentiment classification task that there is no grammar or writing convention in power supply related text and the sentiment related information disperses in the text. Firstly, we use pre-trained word embedding vector to extract the feature of text from the Internet. Secondly, the analyzed deep information featu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 17 publications
(6 citation statements)
references
References 5 publications
(5 reference statements)
0
5
0
1
Order By: Relevance
“…The authors of this research proposed a model based on ELMo, attention mechanism and Softmax classifier. By this model, the appropriate label was predicted for each comment (Liu et al. , 2020).…”
Section: Related Workmentioning
confidence: 99%
“…The authors of this research proposed a model based on ELMo, attention mechanism and Softmax classifier. By this model, the appropriate label was predicted for each comment (Liu et al. , 2020).…”
Section: Related Workmentioning
confidence: 99%
“…At present, the classical classification algorithms are naive Bayes classifier (NBC), support-vector machine, association rules, decision tree (DT), K-nearest neighbor, genetic algorithm, neural network, and so on [10][11][12][13].…”
Section: Research Status Of Single-label Classificationmentioning
confidence: 99%
“…Saat ini, terdapat beragam pendekatan yang dilakukan oleh para peneliti dalam mengembangkan metode klasifikasi teks multi label pada research article, diantaranya adalah dengan pendekatan klasifikasi ensemble k-nearest (Wu, Han, Chen, Li, & Zhang, 2022) , multilayer neural network (Liu, Wen, Gao, Zheng, & Zheng, 2020), graph neural network (Pal, Selvakumar, & Sankarasubbu, 2020) Penelitian ini melakukan klasifikasi multi label pada teks toxic comments menggunakan pedekatan ensemble classifier yaitu dengan mengkombinasikan banyak basis pengklasifikasi. Pendekatan ensemble telah terbukti mampu meningkatkan performa klasifikasi pengkalsifikasi tunggal Terdapat tiga metode utama pada ensemble classifier, yaitu teknik bagging, teknik boosting, dan teknik stacking.…”
Section: Penelitian Terkaitunclassified