We present a global, closed-loop, multiscale mathematical model for the human circulation including the arterial system, the venous system, the heart, the pulmonary circulation and the microcirculation. A distinctive feature of our model is the detailed description of the venous system, particularly for intracranial and extracranial veins. Medium to large vessels are described by one-dimensional hyperbolic systems while the rest of the components are described by zero-dimensional models represented by differential-algebraic equations. Robust, high-order accurate numerical methodology is implemented for solving the hyperbolic equations, which are adopted from a recent reformulation that includes variable material properties. Because of the large intersubject variability of the venous system, we perform a patient-specific characterization of major veins of the head and neck using MRI data. Computational results are carefully validated using published data for the arterial system and most regions of the venous system. For head and neck veins, validation is carried out through a detailed comparison of simulation results against patient-specific phase-contrast MRI flow quantification data. A merit of our model is its global, closed-loop character; the imposition of highly artificial boundary conditions is avoided. Applications in mind include a vast range of medical conditions. Of particular interest is the study of some neurodegenerative diseases, whose venous haemodynamic connection has recently been identified by medical researchers.