The installation of ultra-fast charging stations (UFCSs) is essential to push the adoption of electric vehicles (EVs). Given the high amount of power required by this charging technology, the integration of renewable energy sources (RESs) and energy storage systems (ESSs) in the design of the station represents a valuable option to decrease its impact on the grid and the environment. Therefore, this paper proposes a multi-objective optimization problem for the optimal sizing of photovoltaic (PV) system and battery ESS (BESS) in a UFCS of EVs. The proposed multi-objective function aims to minimize, on one side, the annualized cost of the station, and on the other side, the produced pollutant emissions. The decision variables are the number of PV panels and the capacity of the ESS to be installed. The optimization problem is reduced to a single-objective problem by applying the linear scalarization method. Then the equivalent singleobjective function is optimized through a genetic algorithm (GA). The proposed optimization framework is applied to a study case and the results prove that PV and ESS could lead to a significant reduction of both the annualized cost and the pollutant emissions. Finally, a sensitivity analysis is also presented to validate the effectiveness of the proposed solution.INDEX TERMS extreme fast charging, integrated charging station, bi-objective optimization, electric vehicles, fast-charging load demand.