2016
DOI: 10.1007/978-981-10-3614-9_2
|View full text |Cite
|
Sign up to set email alerts
|

A Multi-parent Crossover Based Genetic Algorithm for Bi-Objective Unconstrained Binary Quadratic Programming Problem

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2017
2017
2021
2021

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 23 publications
0
1
0
Order By: Relevance
“…Evolutionary algorithm essentially is a kind of probability of random search, but with adaptive, it refers to the "survival of the fittest" evolutionary ideas. The algorithm gives a fitness value of each individual in the population, which represents the survival probability of the individual in the process of biological evolution [25]. The higher the fitness of the individual is, the higher the probability of its entry into the next generation of reproduction is.…”
Section: Evolutionary Algorithmmentioning
confidence: 99%
“…Evolutionary algorithm essentially is a kind of probability of random search, but with adaptive, it refers to the "survival of the fittest" evolutionary ideas. The algorithm gives a fitness value of each individual in the population, which represents the survival probability of the individual in the process of biological evolution [25]. The higher the fitness of the individual is, the higher the probability of its entry into the next generation of reproduction is.…”
Section: Evolutionary Algorithmmentioning
confidence: 99%