A multi-representation transfer adversarial network for intelligent fault diagnosis of rotating machinery
Hongfei Zhang,
Daoming She,
Hu Wang
et al.
Abstract:Fault diagnosis of rolling bearings is among the most crucial links in the prognostic and health management of bearings. To solve the problem that cross-domain fault diagnosis cannot be performed due to the distribution differences between different working conditions, a transfer diagnosis method based on multi-representation adversarial neural network is proposed. First, the multi-representation neural network is applied to extract multiscale features. Second, the domain adversarial network is utilized to set… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.