It is possible to construct cost-efficient three-dimensional (3D) or four-dimensional (4D) scanning systems using multiple affordable off-the-shelf RGB-D sensors to produce high-quality reconstructions of 3D objects. However, the quality of these systems’ reconstructions is sensitive to a number of factors in reconstruction pipelines, such as multi-view calibration, depth estimation, 3D reconstruction, and color mapping accuracy, because the successive pipelines to reconstruct 3D meshes from multiple active stereo sensors are strongly correlated with each other. This paper categorizes the pipelines into sub-procedures and analyze various factors that can significantly affect reconstruction quality. Thus, this paper provides analytical and practical guidelines for high-quality 3D reconstructions with off-the-shelf sensors. For each sub-procedure, this paper shows comparisons and evaluations of several methods using data captured by 18 RGB-D sensors and provide analyses and discussions towards robust 3D reconstruction. Through various experiments, it has been demonstrated that significantly more accurate 3D scans can be obtained with the considerations along the pipelines. We believe our analyses, benchmarks, and guidelines will help anyone build their own studio and their further research for 3D reconstruction.