The field of medical images has been rapidly evolving since the advent of the digital medical information era. However, medical data is susceptible to leaks and hacks during transmission. This paper proposed a robust multi-watermarking algorithm for medical images based on GoogLeNet transfer learning to protect the privacy of patient data during transmission and storage, as well as to increase the resistance to geometric attacks and the capacity of embedded watermarks of watermarking algorithms. First, a pre-trained GoogLeNet network is used in this paper, based on which the parameters of several previous layers of the network are fixed and the network is fine-tuned for the constructed medical dataset, so that the pre-trained network can further learn the deep convolutional features in the medical dataset, and then the trained network is used to extract the stable feature vectors of medical images. Then, a two-dimensional Henon chaos encryption technique, which is more sensitive to initial values, is used to encrypt multiple different types of watermarked private information. Finally, the feature vector of the image is logically operated with the encrypted multiple watermark information, and the obtained key is stored in a third party, thus achieving zero watermark embedding and blind extraction. The experimental results confirm the robustness of the algorithm from the perspective of multiple types of watermarks, while also demonstrating the successful embedding of multiple watermarks for medical images, and show that the algorithm is more resistant to geometric attacks than some conventional watermarking algorithms.