The thermodynamic characterization of soils would help to study and to understand their strategies for survival, as well as defining their evolutionary state. It is still a challenging goal due to difficulties in calculating the thermodynamic state variables (enthalpy, Gibbs energy, and entropy) of the reactions taking place in, and by, soils. Advances in instrumentation and methodologies are bringing options for those calculations, boosting the interest in this subject. The thermodynamic state variables involve considering the soil microbial functions as key channels controlling the interchange of matter and energy between soil and the environment, through the concept of microbial energy use efficiency. The role of microbial diversity using the energy from the soil organic substrates, and, therefore, the who, where, with whom, and why of managing that energy is still unexplored. It could be achieved by unraveling the nature of the soil organic substrates and by monitoring the energy released by the soil microbial metabolism when decomposing and assimilating those substrates. This review shows the state of the art of these concepts and the future impact of thermodynamics on soil science and on soil ecology.