We have determined that hMOF, the human ortholog of the Drosophila MOF gene (males absent on the first), encoding a protein with histone acetyltransferase activity, interacts with the ATM (ataxia-telangiectasiamutated) protein. Cellular exposure to ionizing radiation (IR) enhances hMOF-dependent acetylation of its target substrate, lysine 16 (K16) of histone H4 independently of ATM function. Blocking the IR-induced increase in acetylation of histone H4 at K16, either by the expression of a dominant negative mutant ⌬hMOF or by RNA interference-mediated hMOF knockdown, resulted in decreased ATM autophosphorylation, ATM kinase activity, and the phosphorylation of downstream effectors of ATM and DNA repair while increasing cell killing. In addition, decreased hMOF activity was associated with loss of the cell cycle checkpoint response to DNA double-strand breaks. The overexpression of wild-type hMOF yielded the opposite results, i.e., a modest increase in cell survival and enhanced DNA repair after IR exposure. These results suggest that hMOF influences the function of ATM.In eukaryotic cells, DNA damage activates signal transduction pathways that rapidly affect downstream processes such as gene transcription, cell cycle progression, and DNA replication (13,25). All of these processes involve alterations in chromatin structure. Posttranslational covalent modifications of histones have emerged as key regulatory events in DNA damage response. A widespread modification is acetylation catalyzed by histone acetyltransferases and reversed by deacetylases (3, 13, 50). Reversible acetylation of four lysines (K) at positions 5, 8, 12, and 16 in the amino-terminal tail of histone H4 occurs in vivo in all eukaryotes (3). The hyperacetylation of histone H4 could lead to the unfolding of the nucleosomal fiber (50), and the acetylation of histone H4 at K16 occurs on the hyperactive male X chromosome of Drosophila polytene chromosomes (51). Ikura et al. (19) noted that Tip60 (Tat-interacting protein), which acetylates histones H2A, H3, and H4, plays a role in DNA repair. More recently, Kusch et al. (28) demonstrated that the Drosophila Tip60 acetylates nucleosomal phosphoH2Av and exchanges it with an unmodified H2Av. Bird et al. (5) reported that the acetylation of histone H4 by Esa1 (essential SAS2-related acetyltransferase) is required for DNA repair in yeast and suggested that a similar modification may function in mammalian cells.ATM (ataxia-telangiectasia-mutated protein) is crucial for the initiation of signaling pathways in mammalian cells following exposure to ionizing radiation (IR) and other DNA-damaging agents (36, 46), and cells deficient in ATM function also have defective telomere chromatin (47). Bakkenist and Kastan (4) have suggested that chromatin structural perturbations induced by DNA double-strand breaks (DSBs) serve as a trigger for ATM activation. Recent studies indicate that the MRN (Mre11, Rad50, and Nbs1) complex as well as TRF2 either influences activation of ATM (9, 29, 52) or serves as a modulator/amp...