Proceedings of the 20th ACM International Conference on Multimodal Interaction 2018
DOI: 10.1145/3242969.3242981
|View full text |Cite
|
Sign up to set email alerts
|

A Multimodal Approach for Predicting Changes in PTSD Symptom Severity

Abstract: The rising prevalence of mental illnesses is increasing the demand for new digital tools to support mental wellbeing. Numerous collaborations spanning the fields of psychology, machine learning and health are building such tools. Machine-learning models that estimate effects of mental health interventions currently rely on either user self-reports or measurements of user physiology. In this paper, we present a multimodal approach that combines selfreports from questionnaires and skin conductance physiology in … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
17
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
3
3

Relationship

1
5

Authors

Journals

citations
Cited by 19 publications
(17 citation statements)
references
References 69 publications
0
17
0
Order By: Relevance
“…, for audio: robust speaker detection; distinguish personal speaking style from symptoms) Chang et al [ 31 ]; Mallol-Ragolta et al [ 112 ]; Rabbi et al [ 153 ]; Salekin et al [ 168 ]; Spathis et al [ 176 , 177 ]; Zhou et al [ 222 ] Managing irrelevant, redundant information Ojeme and Mbogho [ 136 ] Dataset limitations Restrictions due to data subjects/scale/study context Too small or restricted study sample/need for larger (more diverse) datasets Adamou et al [ 2 ]; Diederich et al [ 45 ]; Feng et al [ 61 ], Kavuluru et al [ 89 ]; Morshed et al [ 128 ], Nobles et al [ 134 ]; Ojeme and Mbogho [ 136 ]; Parades et al [ 140 ]; Park et al [ 141 ], Pestian et al [ 145 ]; Quisel et al [ 152 ]; Ray et al [ 155 ]; Salekin et al [ 168 ]; Spathis et al [ 177 ], Yazdavar et al [ 211 ]; Zhou et al [ 222 ] Unknown confounding variables + limitations of study context Fatima et al [ 57 ]; Saha and De Choudhury [ 165 ]; Salekin et al [ 168 ] Reference dataset not explicitly designed for mental health-related analysis Alam et al [ 6 ] Biased, missing, incomplete data General acknowledgement of biases inherent to model design and datasset used for training Ernala et al [ 53 ]; Hirsch et al [ 78 ]; Park et al [ 141 ] Difficulties due to missing data values/sparse data Alam et al [ 6 ]; Spathis et al [ 176 , 177 ] Need for inclusion of other information (e.g . , biological and genetic data, fMRI, video, facial expressions, social media data) Diedrich et al [ 45 ]; Pestian et al [ 145 ]; Mallol-Ragolta et al [ 112 ]<...>…”
Section: Resultsmentioning
confidence: 99%
See 3 more Smart Citations
“…, for audio: robust speaker detection; distinguish personal speaking style from symptoms) Chang et al [ 31 ]; Mallol-Ragolta et al [ 112 ]; Rabbi et al [ 153 ]; Salekin et al [ 168 ]; Spathis et al [ 176 , 177 ]; Zhou et al [ 222 ] Managing irrelevant, redundant information Ojeme and Mbogho [ 136 ] Dataset limitations Restrictions due to data subjects/scale/study context Too small or restricted study sample/need for larger (more diverse) datasets Adamou et al [ 2 ]; Diederich et al [ 45 ]; Feng et al [ 61 ], Kavuluru et al [ 89 ]; Morshed et al [ 128 ], Nobles et al [ 134 ]; Ojeme and Mbogho [ 136 ]; Parades et al [ 140 ]; Park et al [ 141 ], Pestian et al [ 145 ]; Quisel et al [ 152 ]; Ray et al [ 155 ]; Salekin et al [ 168 ]; Spathis et al [ 177 ], Yazdavar et al [ 211 ]; Zhou et al [ 222 ] Unknown confounding variables + limitations of study context Fatima et al [ 57 ]; Saha and De Choudhury [ 165 ]; Salekin et al [ 168 ] Reference dataset not explicitly designed for mental health-related analysis Alam et al [ 6 ] Biased, missing, incomplete data General acknowledgement of biases inherent to model design and datasset used for training Ernala et al [ 53 ]; Hirsch et al [ 78 ]; Park et al [ 141 ] Difficulties due to missing data values/sparse data Alam et al [ 6 ]; Spathis et al [ 176 , 177 ] Need for inclusion of other information (e.g . , biological and genetic data, fMRI, video, facial expressions, social media data) Diedrich et al [ 45 ]; Pestian et al [ 145 ]; Mallol-Ragolta et al [ 112 ]<...>…”
Section: Resultsmentioning
confidence: 99%
“…Other examples include the AVEC 2013 audiovisual dataset for studies of depression [ 122 , 168 ], and the EASE dataset of people undergoing trauma treatment, e.g . , for PTSD [ 112 ]. The BiAffect mobile phone and Depresjon dataset were used to access acceleration data of people with depression [ 62 ] and bipolar conditions [ 27 ], while the English Longitudinal Study of Ageing (ELSA) provided psychological and mental health data on older adults as indicators of depression [ 209 ].…”
Section: Access To Pre-existing Mental Health Data As An Alternative mentioning
confidence: 99%
See 2 more Smart Citations
“…In our recent work [145], we explored the feasibility of replacing CSE t questionnaires with skin conductance responses and also the fusion of both modalities, in order to estimate changes in trauma severity.…”
Section: Effectiveness Of Cse In Estimating Ptsd Symptom Severitymentioning
confidence: 99%