Hepatocellular carcinoma (HCC) is the most prevalent primary liver malignancy, accounting for approximately 90% of all primary liver cancers, with high mortality and a poor prognosis. A large number of predictive models have been applied that integrate multiple clinical factors and biomarkers to predict the prognosis of HCC. Nomograms, as easy-to-use prognostic predictive models, are widely used to predict the probability of clinical outcomes. We searched PubMed with the keywords “hepatocellular carcinoma” and “nomogram”, and 974 relative literatures were retrieved. According to the construction methodology and the real validity of the nomograms, in this study, 97 nomograms for HCC were selected in 77 publications. These 97 nomograms were established based on more than 100,000 patients, covering seven main prognostic outcomes. The research data of 56 articles are from hospital-based HCC patients, and 13 articles provided external validation results of the nomogram. In addition to AFP, tumor size, tumor number, stage, vascular invasion, age, and other common prognostic risk factors are included in the HCC-related nomogram, more and more biomarkers, including gene mRNA expression, gene polymorphisms, and gene signature, etc. were also included in the nomograms. The establishment, assessment and validation of these nomograms are also discussed in depth. This study would help clinicians construct and select appropriate nomograms to guide precise judgment and appropriate treatments.