In a spatial context, flexible substitution patterns play an important role when modeling individual choice behavior. Issues of correlation may arise if two or more alternatives of a selected choice set share characteristics that cannot be observed by a modeler. Multivariate extreme value (MEV) models provide the possibility to relax the property of constant substitution imposed by the multinomial logit (MNL) model through its independence of irrelevant alternatives (IIA) property. Existing approaches in school network planning often do not account for substitution patterns, nor do they take free school choice into consideration. In this article, we briefly operationalize a closed-form discrete choice model (generalized nested logit [GNL] model) from utility maximization to account for spatial correlation. Moreover, we show that very simple and restrictive models are usually not adequate in a spatial choice context. In contrast, the GNL is still computationally convenient and obtains a very flexible structure of substitution patterns among choice alternatives. Roughly speaking, this flexibility is achieved by allocating alternatives that are located close to each other into nests. A given alternative may belong to several nests. Therefore, we specify a more general discrete choice model. Furthermore, the data and the model specification for the school choice problem are presented. The analysis of free school choice in the city of Dresden, Germany, confirms the influence of most of the exogenous variables reported in the literature. The estimation results generally indicate the applicability of MEV models in a spatial context and the importance of spatial correlation in school choice modeling. Therefore, we suggest the use of more flexible and complex models than standard logit models in particular.