2003
DOI: 10.1016/s0933-3657(02)00087-8
|View full text |Cite
|
Sign up to set email alerts
|

A multiple classifier system for early melanoma diagnosis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
63
0
1

Year Published

2010
2010
2019
2019

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 109 publications
(64 citation statements)
references
References 21 publications
0
63
0
1
Order By: Relevance
“…Accuracy of the model is stable over much of the parameter range, with lower accuracy only occurring where lambda forces few to no features to be included in the model. Dundar et al, 2011Dundar et al, , 2010Esgiar et al, 2002;Farjam et al, 2007;Fatima et al, 2014;Glotsos et al, 2008;Gunduz et al, 2004;Gupta et al, 2001;Hall et al, 2008;Huang and Lai, 2010;Huang and Lee, 2009;Jafari-Khouzani and Soltanian-Zadeh, 2003;Monaco and Tomaszewski, 2008;Kong et al, 2007;Kwak et al, 2011;Land et al, 2008;Lessmann et al, 2007;Meng et al, 2010;Naik et al, 2008Naik et al, , 2007Ozolek et al, 2014;Petushi et al, 2006;Qureshi et al, 2008Qureshi et al, , 2007Sboner et al, 2003;Schnorrenberg et al, 1997;Sertel et al, 2010;Sparks and Madabhushi, 2013;Sudbø et al, 2000;Tabesh and Teverovskiy, 2006;Tabesh et al, 2007Tabesh et al, , 2005Tahir and Bouridane, 2006;Tasoulis et al, 2003;Teverovskiy et al, 2004;Thiran and Macq, 1996;Tsai et al, 2009;Xu et al 2014aXu et al , 2014bYang et al, 2009). These approache...…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…Accuracy of the model is stable over much of the parameter range, with lower accuracy only occurring where lambda forces few to no features to be included in the model. Dundar et al, 2011Dundar et al, , 2010Esgiar et al, 2002;Farjam et al, 2007;Fatima et al, 2014;Glotsos et al, 2008;Gunduz et al, 2004;Gupta et al, 2001;Hall et al, 2008;Huang and Lai, 2010;Huang and Lee, 2009;Jafari-Khouzani and Soltanian-Zadeh, 2003;Monaco and Tomaszewski, 2008;Kong et al, 2007;Kwak et al, 2011;Land et al, 2008;Lessmann et al, 2007;Meng et al, 2010;Naik et al, 2008Naik et al, , 2007Ozolek et al, 2014;Petushi et al, 2006;Qureshi et al, 2008Qureshi et al, , 2007Sboner et al, 2003;Schnorrenberg et al, 1997;Sertel et al, 2010;Sparks and Madabhushi, 2013;Sudbø et al, 2000;Tabesh and Teverovskiy, 2006;Tabesh et al, 2007Tabesh et al, , 2005Tahir and Bouridane, 2006;Tasoulis et al, 2003;Teverovskiy et al, 2004;Thiran and Macq, 1996;Tsai et al, 2009;Xu et al 2014aXu et al , 2014bYang et al, 2009). These approache...…”
Section: Discussionmentioning
confidence: 99%
“…Even before WSI was practical, researchers captured a single frame of an entire slide using a standard microscope creating a subset of the image for computational analysis (Adiga et al, 2006;Aiad et al, 2009;Altunbay et al, 2010;Baak et al, 1981;Brook et al, 2007;Esgiar et al, 2002Esgiar et al, , 2002Farjam et al, 2007;Fatima et al, 2014;Glotsos et al, 2008;Gunduz et al, 2004;Gupta et al, 2001;Hall et al, 2008;Huang and Lai, 2010;Huang and Lee, 2009;Jafari-Khouzani and Soltanian-Zadeh, 2003;Kong et al, 2007;Land et al, 2008;Lessmann et al, 2007;Meng et al, 2010;Ozolek et al, 2014;Qureshi et al, 2008Qureshi et al, , 2007Sboner et al, 2003;Schnorrenberg et al, 1997;Sudbø et al, 2000;Tahir and Bouridane, 2006;Tasoulis et al, 2003;Thiran and Macq, 1996;Tsai et al, 2009). For many researchers doing pathology image analysis today, this is still the best option, either because they do not have access to a WSI system, or because they can capture data not possible with a WSI system, such as confocal microscopy images.…”
Section: Image Subsetting Methodsmentioning
confidence: 99%
“…In Sboner, et al [19], a novel multiple classifier system for the early diagnosis of melanoma was proposed based on the combination of different classification algorithms, which demonstrated a superior performance relatively to the use of each classifiers alone. The proposed system combines three different types of classifiers, namely, linear discriminant analysis (LDA), C4.5 decision tree and kNN classifiers, and uses 38 geometric and colourimetric features as input for the classifiers, and a voting scheme to combine the outputs of each classifiers.…”
Section: Related Studiesmentioning
confidence: 99%
“…The aim of a multiple classifier system is the take advantage of diversity between classifiers to improve the classifying accuracy while maintaining efficiency. Multiple classifier systems have been successfully implemented in numerous machine learning tasks including diagnosing melanoma [10], classifying breast lesions [11] and detecting naked bodies in images [12]. In the previous examples, combining multiple classifiers, under a suitable weighting scheme, was shown to improve performance compared to a single classifier.…”
Section: B Multiple Classifier Systemmentioning
confidence: 99%