Genetic image analysis is an interdisciplinary area, which combines microscope image processing techniques with the use of biochemical probes for the detection of genetic aberrations responsible for cancers and genetic diseases. Recent years have witnessed parallel and significant progress in both image processing and genetics. On one hand, revolutionary multiscale wavelet techniques have been developed in signal processing and applied mathematics in the last decade, providing sophisticated tools for genetic image analysis. On the other hand, reaping the fruit of genome sequencing, high resolution genetic probes have been developed to facilitate accurate detection of subtle and cryptic genetic aberrations. In the meantime, however, they bring about computational challenges for image analysis. In this paper, we review the fruitful interaction between wavelets and genetic imaging. We show how wavelets offer a perfect tool to address a variety of chromosome image analysis problems. In fact, the same word "subband" has been used in the nomenclature of cytogenetics to describe the multiresolution banding structure of the chromosome, even before its appearance in the wavelet literature. The application of wavelets to chromosome analysis holds great promise in addressing several computational challenges in genetics. A variety of real world examples such as the chromosome image enhancement, compression, registration and classification will be demonstrated. These examples are drawn from fluorescence in situ hybridization (FISH) and microarray (gene chip) imaging experiments, which indicate the impact of wavelets on the diagnosis, treatments and prognosis of cancers and genetic diseases.