Although deep learning-based methods have made remarkable achievements in polarimetric synthetic aperture radar (PolSAR) image classification, these methods require a large number of labeled samples. However, for PolSAR image classification, it is difficult to obtain a large number of labeled samples, which requires extensive human labor and material resources. Therefore, a new PolSAR image classification method based on multi-scale contrastive learning is proposed, which can achieve good classification results with only a small number of labeled samples. During the pre-training process, we propose a multi-scale contrastive learning network model that uses the characteristics of the data itself to train the network by contrastive training. In addition, to capture richer feature information, a multi-scale network structure is introduced. In the training process, considering the diversity and complexity of PolSAR images, we design a hybrid loss function combining the supervised and unsupervised information to achieve better classification performance with limited labeled samples. The experimental results on three real PolSAR datasets have demonstrated that the proposed method outperforms other comparison methods, even with limited labeled samples.