BackgroundOculo-auriculo-vertebral spectrum (OAVS) is the second most common cause of head and neck malformations in children after orofacial clefts. OAVS is clinically heterogeneous and characterised by a broad range of clinical features including ear anomalies with or without hearing loss, hemifacial microsomia, orofacial clefts, ocular defects and vertebral abnormalities. Various genetic causes were associated with OAVS and copy number variations represent a recurrent cause of OAVS, but the responsible gene often remains elusive.MethodsWe described an international cohort of 17 patients, including 10 probands and 7 affected relatives, presenting with OAVS and carrying a 14q22.3 microduplication detected using chromosomal microarray analysis. For each patient, clinical data were collected using a detailed questionnaire addressed to the referring clinicians. We subsequently studied the effects ofOTX2overexpression in a zebrafish model.ResultsWe defined a 272 kb minimal common region that only overlaps with theOTX2gene. Head and face defects with a predominance of ear malformations were present in 100% of patients. The variability in expressivity was significant, ranging from simple chondromas to severe microtia, even between intrafamilial cases. Heterologous overexpression ofOTX2in zebrafish embryos showed significant effects on early development with alterations in craniofacial development.ConclusionsOur results indicate that properOTX2dosage seems to be critical for the normal development of the first and second branchial arches. Overall, we demonstrated thatOTX2genomic duplications are a recurrent cause of OAVS marked by auricular malformations of variable severity.