IMPORTANCE Bedside monitor alarms alert nurses to life-threatening physiologic changes among patients, but the response times of nurses are slow.OBJECTIVE To identify factors associated with physiologic monitor alarm response time.
DESIGN, SETTING, AND PARTICIPANTSThis prospective cohort study used 551 hours of video-recorded care administered by 38 nurses to 100 children in a children 's hospital medical unit between July 22, 2014, and November 11, 2015. EXPOSURES Patient, nurse, and alarm-level factors hypothesized to predict response time.
MAIN OUTCOMES AND MEASURESWe used multivariable accelerated failure-time models stratified by each nurse and adjusted for clustering within patients to evaluate associations between exposures and response time to alarms that occurred while the nurse was outside the room.
RESULTSThe study participants included 38 nurses, 100% (n = 38) of whom were white and 92% (n = 35) of whom were female, and 100 children, 51% (n = 51) of whom were male. The race/ethnicity of the child participants was 45% (n = 45) black or African American, 33% (n = 33) white, 4% (n = 4) Asian, and 18% (n = 18) other. Of 11 745 alarms among 100 children, 50 (0.5%) were actionable. The adjusted median response time among nurses was 10.4 minutes (95% CI, 5.0-15.8) and varied based on the following variables: if the patient was on complex care service (5.3 minutes [95% CI, 1.4-9.3] vs 11.1 minutes [95% CI, 5.6-16.6] among general pediatrics patients), whether family members were absent from the patient's bedside (6.3 minutes [95% CI, 2.2-10.4] vs 11.7 minutes [95% CI, 5.9-17.4] when family present), whether a nurse had less than 1 year of experience (4.4 minutes [95% CI, 3.4-5.5] vs 8.8 minutes [95% CI, 7.2-10.5] for nurses with 1 or more years of experience), if there was a 1 to 1 nursing assignment (3.5 minutes [95% CI, 1.3-5.7] vs 10.6 minutes [95% CI, 5.3-16.0] for nurses caring for 2 or more patients), if there were prior alarms requiring intervention (5.5 minutes [95% CI, 1.5-9.5] vs 10.7 minutes [5.2-16.2] for patients without intervention), and if there was a lethal arrhythmia alarm (1.2 minutes [95% CI, −0.6 to 2.9] vs 10.4 minutes [95% CI, 5.1-15.8] for alarms for other conditions). Each hour that elapsed during a nurse's shift was associated with a 15% longer response time (6.1 minutes [95% CI, 2.8-9.3] in hour 2 vs 14.1 minutes [95% CI,] in hour 8). The number of nonactionable alarms to which the nurse was exposed in the preceding 120 minutes was not associated with response time.
CONCLUSIONS AND RELEVANCEResponse time was associated with factors that likely represent the heuristics nurses use to assess whether an alarm represents a life-threatening condition. The nurse to patient ratio and physical and mental fatigue (measured by the number of hours into a shift) represent modifiable factors associated with response time. Chronic alarm fatigue resulting from long-term exposure to nonactionable alarms may be a more important determinant of response time than short-term exposure.