The identification of homogeneous flood regions is essential for regional flood frequency analysis. Despite the type of regionalization framework considered (e.g., region of influence or hierarchical clustering), selecting flood-related attributes to reflect flood generating mechanisms is required to discriminate flood regimes among catchments. To understand how different attributes perform across Canada for identifying homogeneous regions, this study examines five distinctive attributes (i.e., geographical proximity, flood seasonality, physiographic variables, monthly precipitation pattern, and monthly temperature pattern) for their ability to identify homogeneous regions at 186 gauging sites with their annual maximum flow data. We propose a novel region revision procedure to complement the well-known region of influence and L-Moments techniques that automates the identification of homogeneous regions across continental domains. Results are presented spatially for Canada to assess patterning of homogeneous regions. Memberships of two selected regions are investigated to provide insight into membership characteristics. Sites in eastern Canada are highly likely to identify homogeneous flood regions, while the western prairie and mountainous regions are not. Overall, it is revealed that the success of identifying homogeneous regions depends on local hydrological complexities, whether the considered attribute(s) reflect primary flooding mechanism(s), and on whether catchment sites are clustered in a small geographic region. Formation of effective pooling groups affords the extension of record lengths across the Canadian domain (where gauges typically have <50 years of record), facilitating more comprehensive analysis of higher return period flood needs for climate change assessment.