Room-temperature self-healing and self-growing of the exoskeleton with aligned structures in insects has few analogs in synthetic materials. Insect cuticle, such as elytra in beetles, with a typical lightweight lamellar structure, has shown this capability, which is attributed to the accumulation of phenol oxidase with polyphenol and amine-rich compounds in the hard cuticle. In this study, laminar-structure-based intelligence is imitated by incorporating adaptable and growable pyrogallol (PG)-borax dynamiccovalent bonds into a poly(acrylamide)-clay network. The events that lead to crack formation and water accumulation quickly trigger the deprotection of PG. Subsequently, atmospheric O 2 , as a regeneration source, activates PG oxidative self-polymerization. Multiple permanent and dynamic cross-links, with the involvement of the sacrificed borax, and initiation of a series of intelligent responses occur. The fabricated composites with an aligned lamellar structure exhibit outstanding characteristics, such as air/water-triggered superstrong adhesion, self-repairing, self-sealing and resealing, and reprocessing. Moreover, the strategy endows the composites with a self-growing capability, which leads to a 4-to 10-fold increase in its strength in an outdoor climate (up to 51 MPa). This study could lead to advances in the development of air/water-responsive composite materials for applications such as adaptive barriers.