2021
DOI: 10.1587/nolta.12.323
|View full text |Cite
|
Sign up to set email alerts
|

A Nesterov's accelerated quasi-Newton method for global routing using deep reinforcement learning

Abstract: Recent advances in deep reinforcement learning has led to its application in a number of real-world problems. One of the most popularly used deep reinforcement learning algorithms is the deep Q-learning method which uses neural networks to approximate the estimation of the action-value function. Training of deep Q-networks (DQN) is usually restricted to first order gradient based methods. Though second order methods have shown to have faster convergence in several supervised learning problems, their applicatio… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 13 publications
0
0
0
Order By: Relevance