Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Academia-intelligence agency collaborations are on the rise for a variety of reasons. These can take many forms, one of which is in the classroom, using students to stand in for intelligence analysts. Classrooms, however, are ethically complex spaces, with students considered vulnerable populations, and become even more complex when layering multiple goals, activities, tools, and stakeholders over those traditionally present. This does not necessarily mean one must shy away from academia-intelligence agency partnerships in classrooms, but that these must be conducted carefully and reflexively. This paper hopes to contribute to this conversation by describing one purposeful classroom encounter that occurred between a professor, students, and intelligence practitioners in the fall of 2015 at North Carolina State University: an experiment conducted as part of a graduate-level political science class that involved students working with a prototype analytic technology, a type of participatory sensing/self-tracking device, developed by the National Security Agency. This experiment opened up the following questions that this paper will explore: What social, ethical, and pedagogical considerations arise with the deployment of a prototype intelligence technology in the college classroom, and how can they be addressed? How can academia-intelligence agency collaboration in the classroom be conducted in ways that provide benefits to all parties, while minimizing disruptions and negative consequences? This paper will discuss the experimental findings in the context of ethical perspectives involved in values in design and participatory/self-tracking data practices, and discuss lessons learned for the ethics of future academia-intelligence agency partnerships in the classroom.
Academia-intelligence agency collaborations are on the rise for a variety of reasons. These can take many forms, one of which is in the classroom, using students to stand in for intelligence analysts. Classrooms, however, are ethically complex spaces, with students considered vulnerable populations, and become even more complex when layering multiple goals, activities, tools, and stakeholders over those traditionally present. This does not necessarily mean one must shy away from academia-intelligence agency partnerships in classrooms, but that these must be conducted carefully and reflexively. This paper hopes to contribute to this conversation by describing one purposeful classroom encounter that occurred between a professor, students, and intelligence practitioners in the fall of 2015 at North Carolina State University: an experiment conducted as part of a graduate-level political science class that involved students working with a prototype analytic technology, a type of participatory sensing/self-tracking device, developed by the National Security Agency. This experiment opened up the following questions that this paper will explore: What social, ethical, and pedagogical considerations arise with the deployment of a prototype intelligence technology in the college classroom, and how can they be addressed? How can academia-intelligence agency collaboration in the classroom be conducted in ways that provide benefits to all parties, while minimizing disruptions and negative consequences? This paper will discuss the experimental findings in the context of ethical perspectives involved in values in design and participatory/self-tracking data practices, and discuss lessons learned for the ethics of future academia-intelligence agency partnerships in the classroom.
Our digital life consists of activities that are organized around tasks and exhibit different user states in the digital contexts around these activities. Previous works have shown that digital activity monitoring can be used to predict entities that users will need to perform digital tasks. There have been methods developed to automatically detect the tasks of a user. However, these studies typically support only specific applications and tasks and relatively little research has been conducted on real-life digital activities. This paper introduces user state modeling and prediction with contextual information captured as entities, recorded from real-world digital user behavior, called entity footprinting ; a system that records users’ digital activities on their screens and proactively provides useful entities across application boundaries without requiring explicit query formulation. Our methodology is to detect contextual user states using latent representations of entities occurring in digital activities. Using topic models and recurrent neural networks, the model learns the latent representation of concurrent entities and their sequential relationships. We report a field study in which the digital activities of thirteen people were recorded continuously for 14 days. The model learned from this data is used to 1) predict contextual user states, and 2) predict relevant entities for the detected states. The results show improved user state detection accuracy and entity prediction performance compared to static, heuristic, and basic topic models. Our findings have implications for the design of proactive recommendation systems that can implicitly infer users’ contextual state by monitoring users’ digital activities and proactively recommending the right information at the right time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.