ICC 2020 - 2020 IEEE International Conference on Communications (ICC) 2020
DOI: 10.1109/icc40277.2020.9149384
|View full text |Cite
|
Sign up to set email alerts
|

A Network Intrusion Detection Method Based on Stacked Autoencoder and LSTM

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
7
0
3

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
3
2

Relationship

0
9

Authors

Journals

citations
Cited by 48 publications
(10 citation statements)
references
References 18 publications
0
7
0
3
Order By: Relevance
“…A single LSTM unit is much more complex than a traditional neural unit. It has four gates: input gate, output gate, forget gate, and cell gate [35]. The LSTM cell takes input feature xt along with cell state ct1 and hidden state ht1 from previous LSTM units and outputs the current cell state ct and hidden state ht.…”
Section: Proposed Ids Methodologymentioning
confidence: 99%
“…A single LSTM unit is much more complex than a traditional neural unit. It has four gates: input gate, output gate, forget gate, and cell gate [35]. The LSTM cell takes input feature xt along with cell state ct1 and hidden state ht1 from previous LSTM units and outputs the current cell state ct and hidden state ht.…”
Section: Proposed Ids Methodologymentioning
confidence: 99%
“…Assim, a saída do deep autencoderé uma representação aprendida das relações maisúteis entre suas características de entrada. A pesquisa sobre deep autencoder para detecção de intrusão, embora com várias propostas, ainda está em seu inicio [Yan et al 2020]. Outras abordagens, buscam a redução da dimensionalidade dos dados [Li et al 2020], ou mesmo a detecção de outliers [Cheng et al 2021], visando como objetivo final melhorias na precisão da detecção de intrusão.…”
Section: Deep Autoencodersunclassified
“…No entanto, os autores assumem que os eventos podem ser rotulados conforme a necessidade, e visa apenas diminuir os custos computacionais, independentemente da quantidade necessária de instâncias rotuladas nas atualizações do modelo. Por outro lado, [Yan et al 2020] aplica uma série de codificadores automáticos para a tarefa de extração de características. A abordagem propostaé capaz de aumentar a precisão, enquanto a tarefa de atualização do modeloé negligenciada.…”
Section: Trabalhos Relacionadosunclassified
“…At present, most research on WSN intrusion detection uses traditional machine learning methods to analyze network traffic data. Due to the growth in both the network's size and its user base, the WSN network will generate high-dimensional traffic data, and the traditional machine learning approach would encounter issues like poor feature extraction and detection accuracy, which cannot meet such an application environment [4].…”
Section: Introductionmentioning
confidence: 99%