2022
DOI: 10.1007/s11669-022-01010-2
|View full text |Cite
|
Sign up to set email alerts
|

A Neural Network Approach to Predict Gibbs Free Energy of Ternary Solid Solutions

Abstract: We present a data-centric deep learning (DL) approach using neural networks (NNs) to predict the thermodynamics of ternary solid solutions. We explore how NNs can be trained with a dataset of Gibbs free energies computed from a CALPHAD database to predict ternary systems as a function of composition and temperature. We have chosen the energetics of the FCC solid solution phase in 226 binaries consisting of 23 elements at 11 different temperatures to demonstrate the feasibility. The number of binary data points… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 33 publications
0
0
0
Order By: Relevance