In the oil industry, the evaluation of oil viscosity is one of the important issues. Generally, the viscosity of crude oil depends on pressure and temperature. In this study, the prediction issue of oil viscosity has been viewed applying empirical correlations as Beggs-Robinson, Labedi, modified Kartoatmodjo, Elsharkawy and Alikhan, Al-Khafaji. Original field data reports have been obtained from Guneshli oil field of Azerbaijan sector of Caspian Basin. The correlation models used in the evaluation of viscosity of Azerbaijan oil have been implemented in the Python software environment. The obtained values on empirical correlations have been compared to experimental data obtained from Guneshli oil field. Statistical analysis in terms of percent absolute deviation (% AD) and the percent absolute average deviation (% AAD), mean absolute error (% MAE), correlation coefficient (% 2 R ), root mean square error (% RMSE) are used to subject the evaluation of the viscosity correlations. According to statistical analysis, it has been known that the Beggs-Robinson model has shown the lowest value on AAD (10.5614%), MAE (12.4427 %), RMSE (20.0853 %). The Labedi model has presented the worst result on every four criterions. Even though the Elsharkawy-Alikhan model has presented the highest result (99.9272%) on correlation coefficient, in the evaluation of viscosity of Azerbaijan crude oil, the Beggs-Robinson model can be considered more acceptable.