“…Other approaches include support vector machines (Hough & Williams, 2006;Arbelaez et al, 2009), reinforcement learning (Armstrong et al, 2006), neural networks (Gagliolo & Schmidhuber, 2005), decision tree ensembles (Hough & Williams, 2006), ensembles of general classification algorithms (Kotthoff, Miguel, & Nightingale, 2010), boosting (Bhowmick et al, 2006), hybrid approaches that combine regression and classification (Kotthoff, 2012a), multinomial logistic regression (Samulowitz & Memisevic, 2007), self-organising maps (Smith-Miles, 2008b) and clustering (Stamatatos & Stergiou, 2009;Stergiou, 2009;Kadioglu et al, 2010). Sayag et al (2006), Streeter et al (2007a compute schedules for running the algorithms in the portfolio based on a statistical model of the problem instance distribution and performance data for the algorithms.…”