2023
DOI: 10.2196/40455
|View full text |Cite
|
Sign up to set email alerts
|

A Neural Network Model Using Pain Score Patterns to Predict the Need for Outpatient Opioid Refills Following Ambulatory Surgery: Algorithm Development and Validation

Abstract: Background Expansion of clinical guidance tools is crucial to identify patients at risk of requiring an opioid refill after outpatient surgery. Objective The objective of this study was to develop machine learning algorithms incorporating pain and opioid features to predict the need for outpatient opioid refills following ambulatory surgery. Methods Neural networks, regression, random forest, and a support v… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 47 publications
0
1
0
Order By: Relevance
“…Development of postoperative complications: Most studies focused on the prediction of postoperative acute complications 26–28,42,44–49,59,99,110,112,113,118,123 such as pain and opioid use, 53–57 postoperative atrial fibrillation (new-onset atrial fibrillation), 82 postoperative risk of stroke or myocardial infarction, 50,71,77 and delirium or cognitive decline. 65–70 Other models focused on the risk of developing pneumonia or respiratory failure, 83,85,125 acute kidney injury, 43,52,58,60–63,120–122 liver failure 117 or development of sepsis or surgical site infection.…”
Section: Resultsmentioning
confidence: 99%
“…Development of postoperative complications: Most studies focused on the prediction of postoperative acute complications 26–28,42,44–49,59,99,110,112,113,118,123 such as pain and opioid use, 53–57 postoperative atrial fibrillation (new-onset atrial fibrillation), 82 postoperative risk of stroke or myocardial infarction, 50,71,77 and delirium or cognitive decline. 65–70 Other models focused on the risk of developing pneumonia or respiratory failure, 83,85,125 acute kidney injury, 43,52,58,60–63,120–122 liver failure 117 or development of sepsis or surgical site infection.…”
Section: Resultsmentioning
confidence: 99%