2024
DOI: 10.1002/jcc.27313
|View full text |Cite
|
Sign up to set email alerts
|

A neural network potential based on pairwise resolved atomic forces and energies

Jas Kalayan,
Ismaeel Ramzan,
Christopher D. Williams
et al.

Abstract: Molecular simulations have become a key tool in molecular and materials design. Machine learning (ML)‐based potential energy functions offer the prospect of simulating complex molecular systems efficiently at quantum chemical accuracy. In previous work, we have introduced the ML‐based PairF‐Net approach to neural network potentials, that adopts a pairwise interatomic scheme to predicting forces within a molecular system. Here, we further develop the PairF‐Net model to intrinsically incorporate energy conservat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 41 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?